If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60=-16x^2-64x+60
We move all terms to the left:
60-(-16x^2-64x+60)=0
We get rid of parentheses
16x^2+64x-60+60=0
We add all the numbers together, and all the variables
16x^2+64x=0
a = 16; b = 64; c = 0;
Δ = b2-4ac
Δ = 642-4·16·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-64}{2*16}=\frac{-128}{32} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+64}{2*16}=\frac{0}{32} =0 $
| -7x/2+13/4=17/4 | | |6x-7|+5=13 | | 8X^2+24X+8y^2-16y-486=0 | | 16y=24 | | 7x^2-43.75=0 | | x/3+20=2x | | 80+45+b=180 | | (x-1)(x-2)(x-3)(x-4)+8=0 | | 90+70+g=180 | | 4x-3(x-10)=-8 | | 142+24+n=180 | | 6m^2-2=598 | | 5d-1/3(12-6d)=10 | | 5a-(3-a)=4a-13 | | 7=-4.2f | | 5z+10=3z+13 | | 124+33+x=180 | | -5-5p=20 | | 2(4x-1)+3(x-2)=1 | | 10y-(2y-8)=64 | | X-3/5x-20+11=0 | | -72x-17x+72=0 | | 24=(2+x)6 | | 2(3x+5)-3(x-2)=25 | | 2k+7-4k=27 | | $430+5f=$1200 | | $430+5f=$1, | | -14=2(k−20) | | c/2+-16=-13 | | 3m+4-8m=-9m+8 | | 15x-9-2=16x | | 9x^2+9x=18 |